
The Evolution of Two Remediation Technologies: Combined In Situ Stabilization (ISS) and In Situ Chemical Oxidation (ISCO)

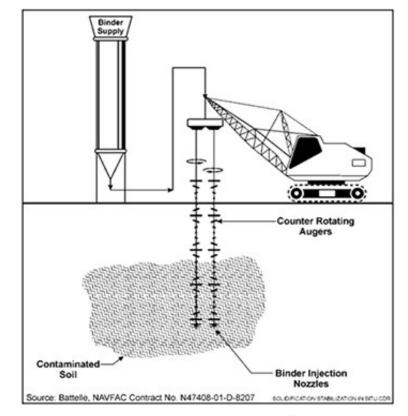
Brant Smith, Director of Technology, Evonik

Evonik Soil & Groundwater Remediation

Field-Proven Portfolio of Remediation Technologies

Presentation Outline

- Technology Overview
 - ISS
 - ISCO
 - Combined ISCO / ISS
- Why Combine?
 - Synergies
- Case Studies



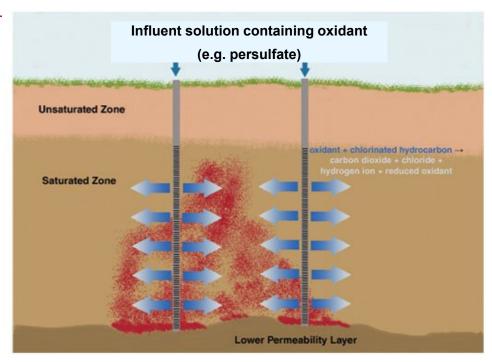
In Situ Solidification and Stabilization

- Use of soil mixing to blend binding agent(s) with contaminated soils:
 - Portland Cement
 - Blast Furnace Slag
- Methods:
 - Stabilization:
 - Chemical processes that reduce leachability
 - Solidification:
 - Decreasing of surface area, hydraulic conductivity, effective porosity
 - Increasing compressive strength

Common Objectives of ISS

- 1. Reduced hydraulic conductivity
 - 2-3 orders of magnitude below native soils
 - 1 x 10⁻⁶ cm/sec
- 2. Unconfined Compressive Strength (UCS)
 - "Workable" ~20-60 psi
 - Hardened
 - ISS often targets 50 psi
- 3. Lower contaminant flux and leachate concentrations

General Relationship between Soil Consistency and Unconfined Compressive Strength						
Unconfined Compressive Strength (UCS) Ranges						
psi		kPa (KN/m²)				
Low	High	Low	High			
0	3	0	24			
3	7	24	48			
7	14	48	96			
14	28	96	192			
28	56	192	383			
>56		>383				
	Unconfined Unconfined p Low 0 3 7 14 28	Unconfined Compressive psi Low High 0 3 3 7 7 14 14 28 28 56	Unconfined Compressive Strength Unconfined Compressive Strength (UC) psi kPa (K) Low High Low 0 3 0 3 7 24 7 14 48 14 28 96 28 56 192			


Typical target range for "workable" soils ~20-60 psi

^{66 |} March 2024 | UK Visit-Evolution of ISCO-ISS

In Situ Chemical Oxidation

What it is:

- Oxidants are reagents that <u>accept/take</u> electrons from, or oxidize, contaminants of concern → CO₂
- Typically applied via injection or soil mixing
- Objectives:
 - Contaminant destruction / mass reduction
 - Reduced concentrations in soil, groundwater, leachate and vapors


```
Examples (persulfate reactions):

Benzene: 15 S_2 O_8^{-2} + C_6 H_6 + 12 H_2 O \rightarrow 6 CO_2 + 30 HSO_4^{-1}

PCE: 2 S_2 O_8^{-2} + C_2 CI_4 + 4 H_2 O \rightarrow 2 CO_2 + 4 CI^- + 4 H^+ + 4 HSO_4^{-1}
```

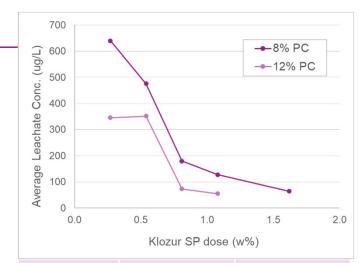
Combined Remedy: Benefits

Benefits:

- Two remedies from single application
- Ready for redevelopment/access shortly after application
- Soil mixing
 - Homogenizes heterogenious contaminant
 - Ensures better contact with contamination
 - Can add more oxidant per application (if needed)

Courtesy of Stockholm Stadt

Courtesy of Bill Lang



Courtesy of Jacobs

Combined Remedy: Synergies

- Synergies
 - Alkalinity from ISS creates alkaline activated persulfate
 - ~2 parts PC to 1 part SP
 - Compounding effect:
 - Both technologies reduce leachate and soil vapors
 - Oxidizing organic results in stronger solidification
 - Lower hydraulic conductivity
 - Can result in less bulking/swell
 - Decrease handling/disposal costs

Klozur SP (% w/w soil)	8% PC		8% PC/BFS	
	Day 90 UCS (psi)	% of ISS only	Day 90 UCS (psi)	% of ISS only
0	90	100%	110	100%
1	105	117%	160	145%
2	110	122%	175	159%
4	75	83%	140	127%

ISCO-ISS Successfully Remediates PCE DNAPL at Former Dry Cleaner in Residential Neighborhood

Location: Former Kent Cleaners, Lansing, Michigan

Lead Consultant: Hamp Mathews & Associates

Contractor: Lang Tool

Regulator: EGLE

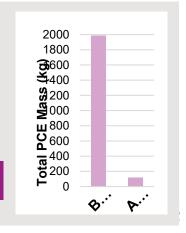
Contaminants: PCE (up to >1,000 mg/kg)

Goal: Reduce vapor intrusion risk

Treatment volume: 12,354 cy soil,

Reagent Dose (w/w soil):

Klozur SP: 1-2% (440K lbs)Portland Cement: 4% (1.6M lbs)



Results

- ▶ 94% reduction in PCE mass
- > UCS of 25-50 psi (Day 60)
- Underlying GW conc. reduced by 90 to 99%

Saved client >\$2.5 Million compared to excavation estimate

ISCO-ISS Successfully Remediates Petroleum Contaminated Soils for Site Redevelopment

Location: Bolzano, Italy

Lead Consultant: Ladurner Bonifiche S.r.I.

Contaminants: Petroleum Hydrocarbons

Goals: Combination of contaminant reduction, soil stability targets, limit soil bulking

Treatment volume: 3,500 m³, from 3-8 m bgs

Dose (w/w soil):

■ Klozur SP: 0.7-1%

■ Portland Cement: 4-8%

Installation: 556 columns w. large diameter

auger

ISCO Results & Goals:

- Benzene: 100% samples < 2 mg/Kg
- TPH (C4-C12): 100% samples <250 mg/Kg
- TPH (C13-C40): Over 50% samples <750 mg/Kg

ISS / Geotechnical Goals Achieved:

- UCS: 30 to 70 psi
- Permeability: 2.8 x 10⁻⁶ to 7.3 x 10⁻⁷ cm/sec

Less than 15% soil bulking

Summary

- ISCO-ISS is combined remedy of two established technologies
 - Single application
 - Treat/degrade significant portions of contaminant mass
 - Residual is solidified in a monolith
 - Several synergistic benefits:
 - Higher UCS, lower leachate, lower hydraulic conductivity
 - Target UCS range, soils can be reworked, if needed
 - Less soil bulking can decrease project costs
 - Site ready for redevelopment/access shortly after application

Thank you!

Questions?

Brant Smith

Director of Technology Persulfates | Soil & Groundwater **Evonik Corporation**

Mike Mueller

Business Manager, EMEA

E. brant.smith@evonik.com

Soil & Groundwater

Evonik Operations GmbH

E. mike.mueller@evonik.com

Evonik Corporation

Soil & Groundwater Remediation

remediation@evonik.com

www.evonik.com/remediation

Thank you!

Questions?

Brant Smith

Director of Technology Persulfates | Soil & Groundwater **Evonik Corporation**

E. brant.smith@evonik.com

Mike Mueller

Business Manager, EMEA

Soil & Groundwater

Evonik Operations GmbH

E. mike.mueller@evonik.com

Evonik Corporation

Soil & Groundwater Remediation

remediation@evonik.com

www.evonik.com/remediation

