

Transformation products as emerging contaminants in soil and water – A case study on TFA and R471811 *Eef De Clercq, VITO, researcher*

Transformation products as emerging contaminants in soil and water

Eef De Clercq, VITO

ENSOR 2024

2 case studies to alert for PMsubstances

- New hazard classes PMT and vPvM
 - Drinking Water
- The precautionary principle
- 2 examples in Europe
 - R471811
 - TFA
 - Flanders Environment Agency and the Flemish Department of Care

VLAAMSE MILIEUMAATSCHAPPIJ

It's in a word - Limit values in water

Drinking water limit values EU WFD (2000/60/EC), EU DWD (2020/2184)

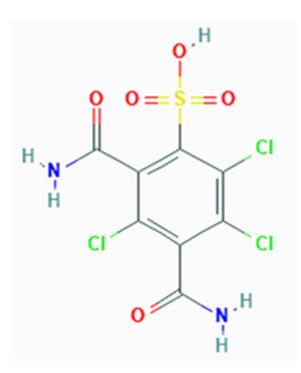
- Parametric values

- Health based values
 - Health-related indicator values / precautionary
 - Drinking water guide values

Groundwater limit values EU GWD (2006/118/EC)

- Groundwater quality standards
- Threshold values

Surface water limit values EU WFD (2000/60/EC), EU EQS (2013/39/EU)

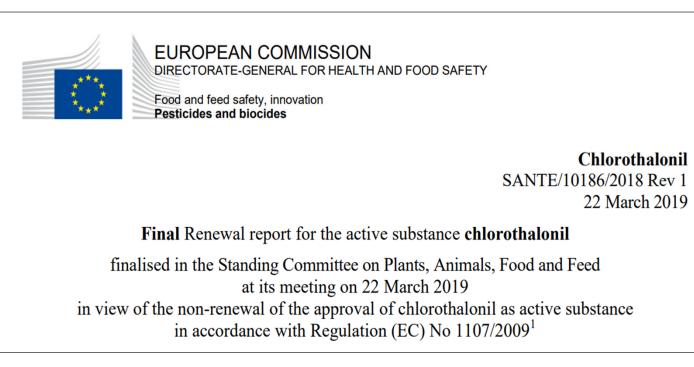

vito.be

- Environmental quality standards

R471811 – Identification and use

• 2,4-dicarbamoyl-3,5,6-trichlorobenzenesulfonic acid

R471811 – Identification and use


- 2,4-dicarbamoyl-3,5,6-trichlorobenzenesulfonic acid
- Main TP (12%) of CHLOROTHALONIL

R471811 – Identification and use

- 2,4-dicarbamoyl-3,5,6-trichlorobenzenesulfonic acid
- Main TP (12%) of CHLOROTHALONIL

R471811 – Characteristics and fate

- Persistent (medium to high)
- Very mobile
- Very polar, highly soluble in water (anion)
- Soil → Water

R471811 – Toxicology

- No toxicological reference values for oral exposure
 - Limited screening of information
- Unlikely to be genotoxic
- Sharing the carcinogenic potential of the parent chlorothalonil ??
 - EFSA has recommended to consider all TPs of chlorothalonil relevant metabolites (EFSA, 2018)

Sources used for screening for RV				
INERIS	France			
JECFA	WHO			
EFSA	EU			
ATSDR	U.S.			
EPA	U.S.			

R471811 – Toxicology of mother product

• Toxicological reference values of CHLOROTHALONIL

Туре	Value (mg/kg bw/ d)	Derivation year	Source
ADI	0,015	Not specified	EFSA
ADI	0,01	1991	Drinking water guidelines 2022, Australia
Health Advisory (HA)	0,015	1988	US-EPA

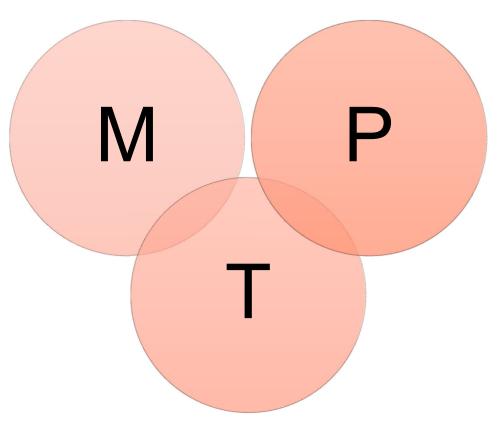
• Harmonized C&L classification: Carcinogenic category 2

ightarrow proposed classification as Carc. 1B by EFSA (2018)

R471811 – Limit values in drinking water

Country	Parametric value (µg/	(I)	Health b	oased values (μg/l)
Flanders (BE)	0,1	VMM, 2023	4,5	Precautionary, 2023
Switzerland	0,1	Kiefer et al., 2020		
France	0,1	Anses, 2023	3,0	precautionary; ARS <u>2023</u>
Denmark	0,1	Kiefer et al., 2020		
Germany			3,0	Indicator value; UBA, 2021

R471811 – Detection in water


Country	Samples	Detection	Limit value (0,1 µg/l) exceedance	Max. value
Switzerland (Kiefer et al., 2020)	Drinking water resources	100% of the samples	52%	2,2 µg/l
France (Anses, 2023)	Raw and treated water	60% and 57% respectively	34%	2 μg/l (raw water)

Banning Chlorothalonil - Just in time?

TP R471811

- Monitoring needed
 - Drinking water quality control
 - Uses of (non-approved) fungicide

Parliamentary question - E-000263/2024 European Parliament

Combatting the fraudulent use of chlorothalonil

29.1.2024

Question for written answer E-000263/2024 to the Commission

 Privacy statement | Legal notice | Cook

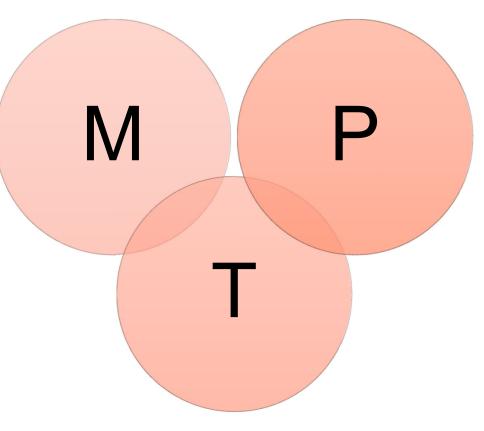
 JOINT RESEARCH CENTRE

 EUROPEAN SOIL DATA CENTRE (ESDAC)

 EUROPEAN COMMISSION > JRC > ESDAC > THEMES > SOIL CONTAMINATION > PESTICIDES RESIDUES IN EU AGRICULTURAL SOILS BASED ON LUCAS

 Search
 Newsletters
 Atlases
 Events
 Vacancies

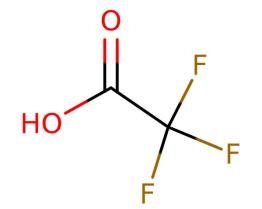
 Desticides residues in EU agricultural soils based on LUCAS

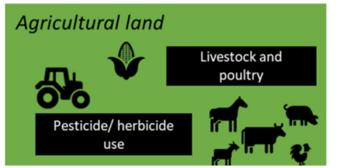


EU SOIL OBSERVATORY

Banning Chlorothalonil - Just in time?

TP R471811


- Monitoring needed
 - Drinking water quality control
 - Uses of (non-approved) fungicide
- Health Risk assessment needed
 - Toxicity gap



TFA – Identification and use

- Trifluoroacetic acid
- PFAS PFAA PFCA short chain
- Different sources
 - Production of TFA
 - Regsitered in the EU under REACH (100 1000 ton)
 - Degradation to TFA
 - Point sources + diffuse sources

Urban area

Transportation

Medicine use

Image: Second seco

Industrial site

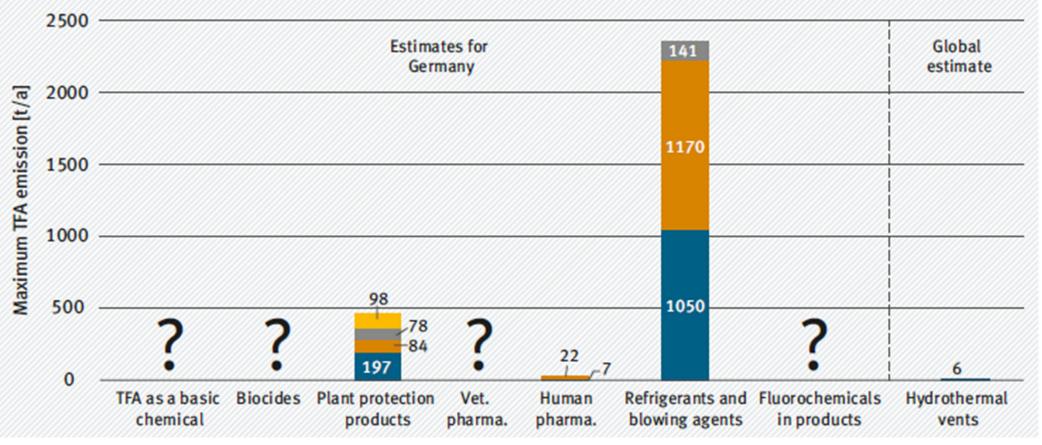
Industrial

processes

Figures: Hartmann et al., 2023

vito

PRODUCTION OF PPP METABOLITE OF PPP AND PESTICIDES EFSA identified 140 pesticides in 2014 potentially leading to TFA formation


DEGRADATION OF CF3-SUBSTANCES/ fluorine-anesthetics medicines refrigerants, Teflon products personal care products

ANALYSIS OF PEPTIDES PREPARATION OF MEDICINS SOLVENT/CATALYST for polymerization and condensation reactions

"140 pesticides are identified potentially leading to TFA (EFSA, 2014)

"a potential breakdown product of a large number (> 1 million) of chemicals" (Solomon, 2016)

🗡 vito

TFA – Characteristics and fate

- Very persistent
- Very mobile
- Highly soluble in water (anion)
- Low adsorption to organic carbon
- Uptake by plants
- Soil & atmospheric deposition \rightarrow Water (+ point sources)

TFA – Toxicology

• Toxicological reference values for TFA:

Type of value	Value mg/kg bw/ d	Year derivation	of Source
ADI	0,050	2014	EFSA
ADI	0,018	2020	UBA

• RIVM (the Netherlands): not sufficient information to confirm both ADI's (2023) Relative potency Factor 0,002 (compared to PFOA)

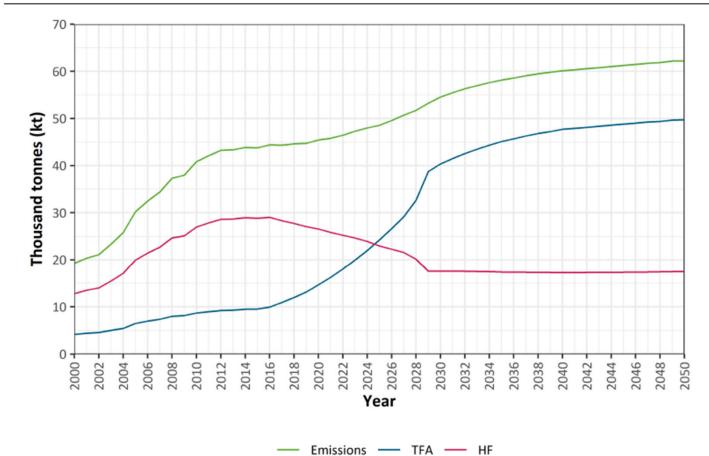
TFA – Limit values in drinking water

Country	Parametric value (µg/l)		Health base	ed values
Flanders (BE)			4,5	Precautionary; 2023
The Netherlands	1,0	halogenated aliphatic hydrocarbons; RIVM (…ILT2022)	2,2	Precautionary; RIVM, 2023
Germany			60	Guideline Value; UBA, 2021

$$QS_{dw,hh} = \frac{0.2 \cdot TL_{hh} \cdot bw}{uptake_{dw}}$$

$$\rightarrow$$
 QS dw,hh = 305 µg/l or 126 µg/l

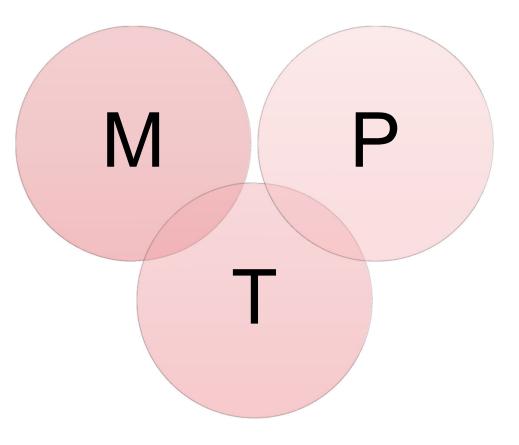
TFA – Detection in water


Country	Samples	Location	Max. value or range
Germany (UBA,	19 tap water samples (2018)	Various locations	2,5 µg/l
2021b)	Drinking water, Groundwater (2017)	Nearby a wastewater discharge	> 20 µg/l
	29 Groundwater samples (2018)	Nearby intensive agriculture areas	17 µg/l
	181 Groundwater samples (2019) 3 drinking water catchment areas (2018)	Regional Not connected to surface water	> 10 µg/l > 10 µg/l
Nederland (RIVM, 2023)	Surface water (Rhine river, 2021)	All locations	1,4 µg/l

UBA Texte Persistent degradation products of halogenated refrigerants and blowing agents in the environment - Final report

Source: UBA (2021)

Figure 23: Emissions of TFA-forming HCFC-, HFC-, u-HFC- and u-HCFC-containing refrigerants and propellants in Europe (EU-28) and quantities of trifluoroacetic acid (TFA) and hydrogen fluoride (HF) formed therefrom in metric kilotonnes for the period from 2000 to 2050 for the "u-HFC and u-HCFC maximum scenario".

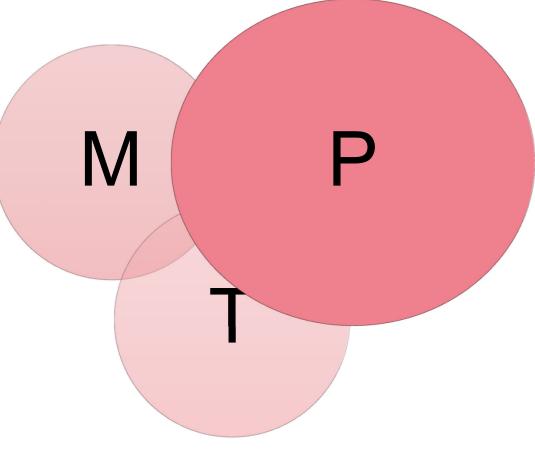


Should we reduce the inputs of TFA?

- Risk assessment to cover much longer timescales
 - Risk increases and is left for future generations
 - Principle of precaution
- Frictions between sectors
 - TFA cannot be removed by economical means
- Precautionary principle

vP as sufficient justification for limiting its input, even if TFA has a low environmental toxicity"

Should we reduce the inputs of vP?


• Cousins et al., 2019:

"The concentration of persistent (toxic) substances in the environment cannot be regulated in a timely manner"

• Hartmann et al., 2023:

"extremely persistent substances like PFAS—have such long environmental residence times that inevitably exposure concentrations will reach a certain concern level"

Literature R471811

- EFSA, 2018
- <u>ARS, 2023</u>
- <u>UBA, 2021</u>
- Kiefer et al., 2020
- <u>Anses, 2023</u>

Literature TFA

- <u>EFSA, 2014</u>
- <u>Solomon et al., 2016</u>
- <u>UBA, 2021</u>
- <u>UBA, 2021b</u>
- <u>RIVM, 2023</u>
- Hartmann et al., 2023

QA

Transformation products as emerging contaminants in soil and water - A case study on TFA and R471811

Eef De Clercq, VITO, researcher

