

Environmental monitoring of endocrine disrupting chemicals through the integration of bioassays and chemical analyses Laetitia Six, OVAM, Policy Coordinator

Environmental monitoring of endocrine disrupting chemicals (EDC) through the integration of bioassays and chemical analyses

Partnership for the Assessment of the Risks from Chemicals

Laetitia Six (OVAM), on behalf of EDC PilotSurvey Project Team

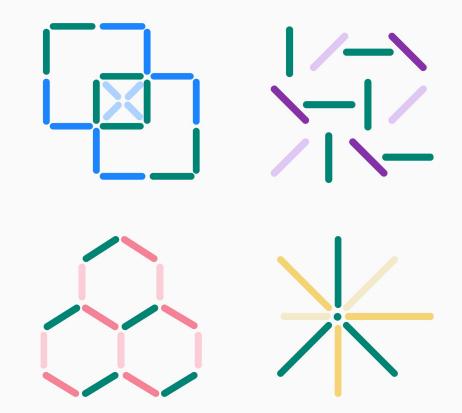
Brussels, ENSOr workshop, 15 March 2024

 $P \rightarrow R$

OVAM

Outline of the presentation

 $P \land R - C$ PARC in a nutshell


Why endocrine disrupting chemicals?

Monitoring strategy

Conclusions & take home messages

PARC in a Nutshell

PARC = Partnership for the Assessment of Risks from Chemicals

- A public-public **partnership** under Horizon Europe ۲
- Co-fund budget ۲
- Started 1st May 2022 \rightarrow duration of 7 years ۲
- \approx 200 partners from 29 countries ۲

DEPARTMENT OF ENVIRONMENT

DEVELOPMENT

& SPATIAL

UNIVERSITEIT

BRUSSEL

Includes 3 European Agencies: ۲

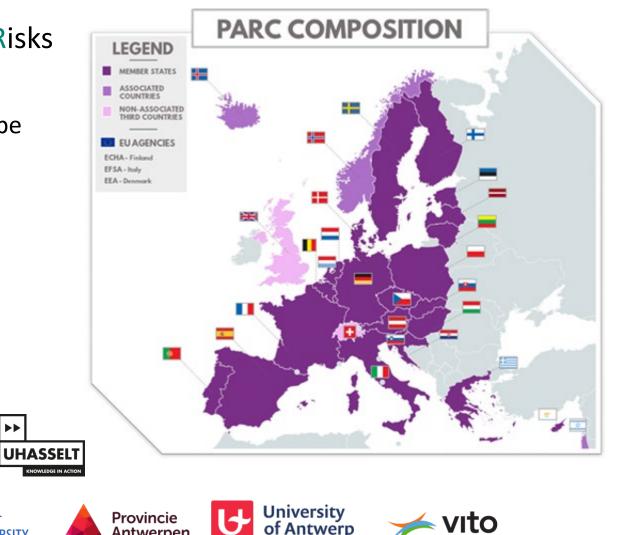
KU LEUVEN

Antwerper

圙

GHENT

UNIVERSITY


federal public service

AND ENVIRONMENT

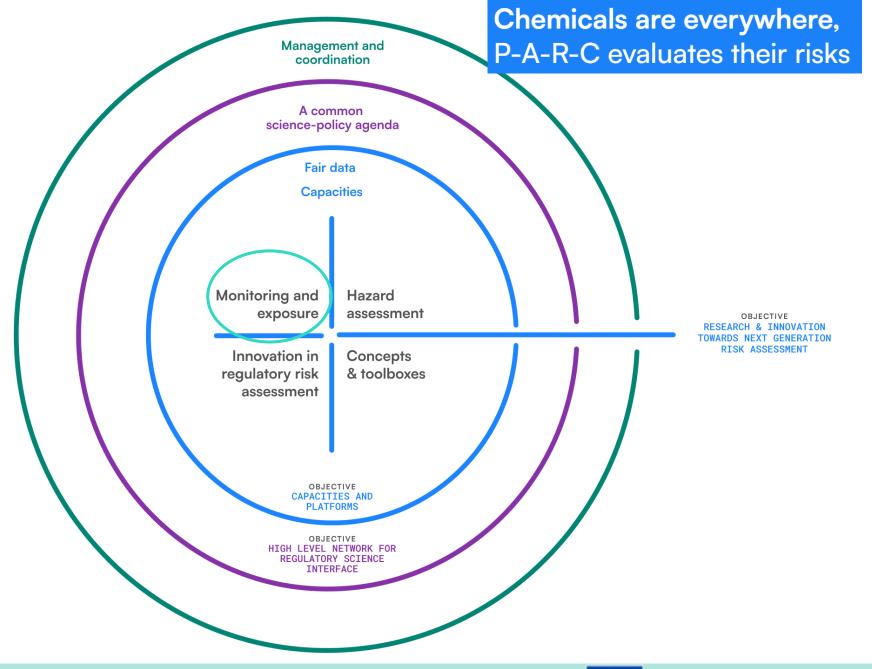
landers Research Institute fo

ALTH, FOOD CHAIN SAFETY

13 Belgian partners: ۲

of Antwerp

No.


OVAM

Vsciensano

PARC Structure

Global Objective

Consolidate and **strengthen** the EU's **R&I** capacity for **chemical risk assessment** to protect **human health** and the **environment** and contribute to a non-toxic environment and a circular economy.

WP4: Monitoring and Exposure

4.1 Human Biomonitoring

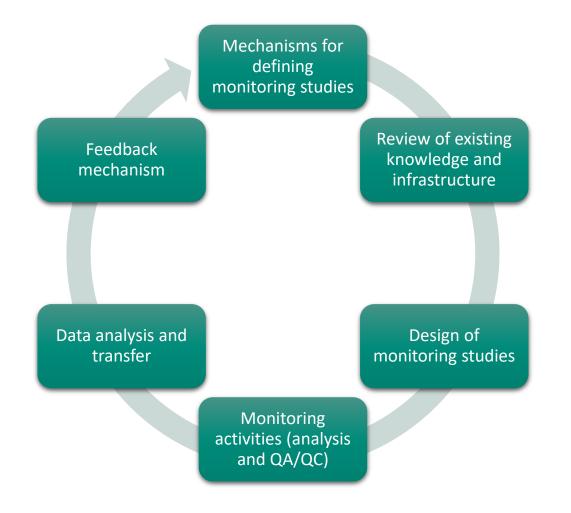
Consolidate and further develop the **human biomonitoring platform**, generating and analysis of HBM data, and develop the network of qualified laboratories for biomarkers analysis

4.2 Environmental & Multisource Monitoring

Understand the **presence of chemicals in the environment**, their exposure to humans, considering multiple sources (e.g. air, water food, consumer products)

4.3 Innovative tools and methods

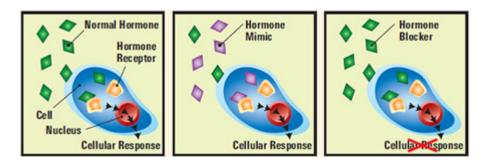
Develop **innovative tools and methods** to improve human, food and environmental monitoring schemes, contribute to an early warning detection of chemicals of emerging concern.

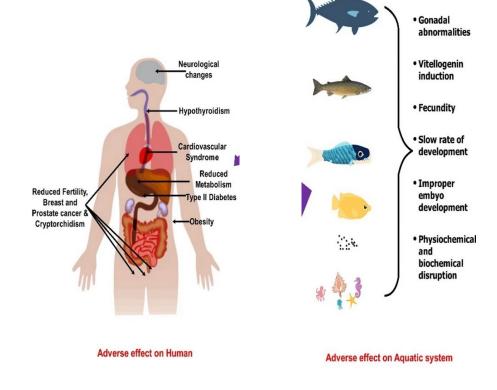

Task 4.2 Environmental & Multisource Monitoring

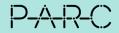
Requirements:

- Respond to regulatory needs
- Build on existing information and infrastructure

First cycle of projects (2022 – 2025):

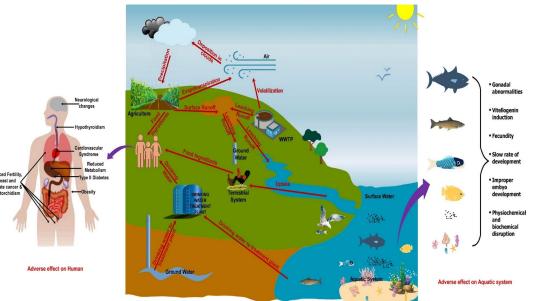

Pilot study on **PFAS** and **endocrine disrupting chemicals (EDCs)** to establish the overall process of **environmental monitoring**


What are EDCs?


= natural or human-made chemicals that may mimic, block, or interfere with the body's hormones, which are part of the endocrine system.

https://www.niehs.nih.gov/health/topics/agents/endocrine

Why EDCs as a first case study in PARC?


- EDCs = a big versatile group of chemical classes, such as bisphenol A, dioxines, PFAS, phthalates, ...
- They are a group due to their toxic endpoint rather than their chemical similarity (<> PFAS)
- Expected that there are still many unknown and less studied compounds

Environmental fate?

- Diffuse pollution due to large number of sources and uses
- There is a need for knowledge on the sources, pathways and occurrence levels in Europe

https://www.niehs.nih.gov/health/topics/agents/endocrine

Longlist of EDCs as starting point

Candidate EDCs	No substances
Hormones	20
EDList1	107
EDList2	73
EDList3	10
PPP EFSA	9
ANSES/Deduct	906
ECHA-Bisphenols	158
Norman S20 (BP)	52
Norman S67 (BP)	77
Norman S87(BP)	92
VEGA predictions	6079
Total number of substances	7327

Regulated as EDCs (1034 substances)

• Already identified (126 substances)

ED List I: Substances identified as endocrine disruptors at EU level

ED List III: Substances considered, by the evaluating National Authority, to have endocrine disrupting properties

PPP EFSA

• Non regulated but under evaluation (908 substances)

ED List II + ANSES/Deduct: Substances under evaluation for endocrine disruption under an EU legislation

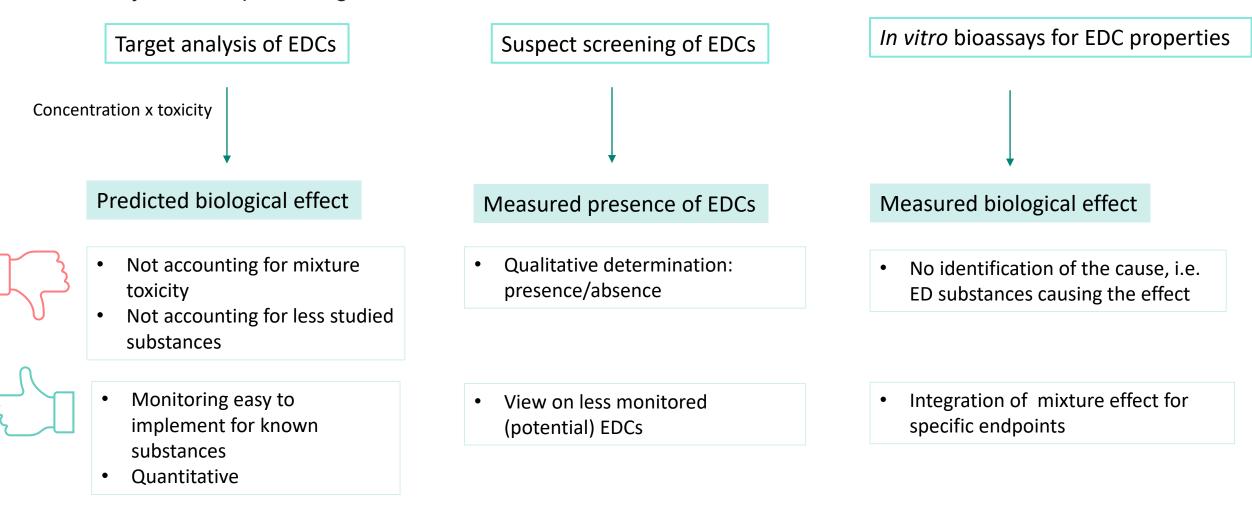
Hormones (20 substances)

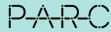
Suspects from model predictions + other lists (6273 substances)

→ Large group of EDCs potentially not on the radar yet!

Objectives of the EDC monitoring strategy

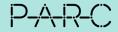
- Determine a baseline of environmental contamination caused by several decades of production and uses of EDCs
- Characterise relevant exposure routes from diffuse and point sources
- Facilitate the assessment of the **effectiveness of EDC** management actions


Methodology

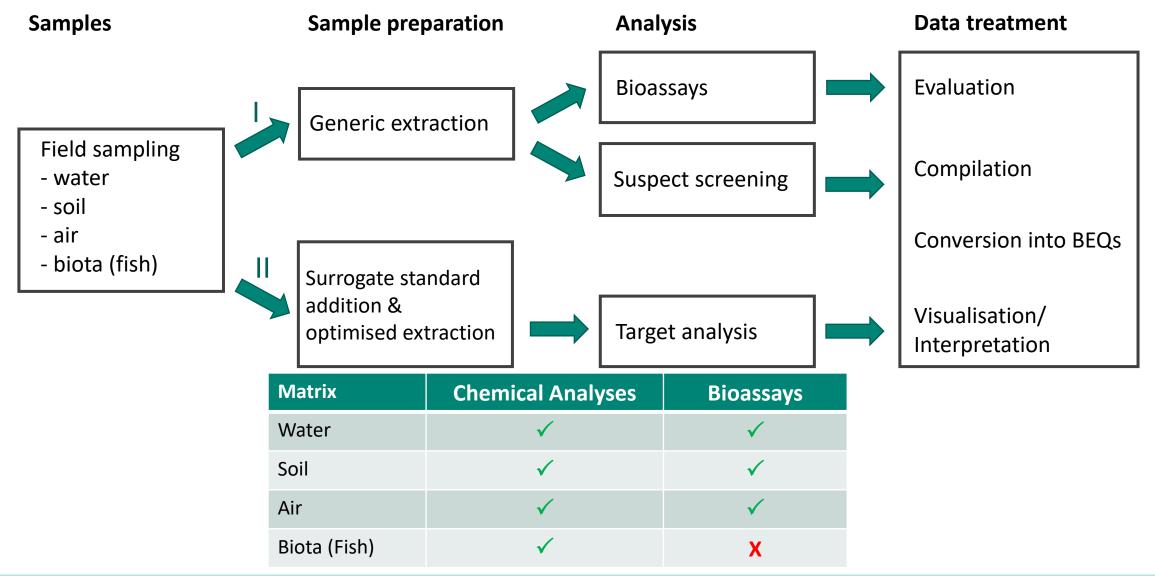

- Conducting an effect-based assessment with broad spectrum of species-specific endocrine activities, representative of different modes of action in parallel
- Conducting chemical analysis:
 - $\circ~$ target analysis for selected compound groups
 - suspect screening of all identified candidate EDCs

Integration of effect-based assessment and chemical analysis

Effects of chemicals depend on the concentration, toxicity, solubility, bioavailability, duration of exposure and the sensitivity of the exposed organisms.

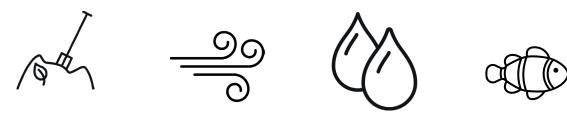


Integration of effect-based assessment and chemical analysis



BEQ = bioanalytical equivalentsBEQ-Bio = activity measured in bioassaysBEQ-Chem = measured bioactive chemicals' concentration

Monitoring workflow from sample collection to data treatment



Samples

>200 samples throughout Europe, covering all regions

4 matrices:

Different pressures: industry, agriculture, urban, WWTP, ...

Sampling: Until end of April 2024

Lesson learned

• For alignment of sampling with (national) monitoring programmes: need notice long time in advance (1 year ideally)

Sample matrices & geographical coverage – example Soil 🔍

					中世界	MA	₽ [₩]			
Region	Country	Organisation	urban		Agricultural (cropland)	grass land	Reference	Total per country	Total per region	
E	Czech Republic	RECETOX (MU)	2	2	2	1	0	7	13	
E	Poland	UG-PL	1	1	1	2	1	6		Other matrices:
N	Latvia	UL	1	1	1	1	0	4	10	
N	Norway Sweden	NILU IVL	1	1	1	1	1	1	10	- fish: # 21
N C	Greece	NKUA	1	1	1	1	0	3		- water: # 117
s	Spain	IDAEA-CSIC	1	1	2	1	1	6	10	- air: # 29
w	France	INRAE	1	0	2	2	1	6	10	
W	Belgium	OVAM	0	0	1	1	0	2		
W	Belgium	ISSeP	1	1	0	0	0	2		
	ion intended				2 to 3	2 to 3	1		10 to 11	
Total ir	ntended		9	9	10	10	4		42	
Total p	rovided		10	8	11	10	4		43	

Sampling campaign = logistically challenging!

Scheme: Bottle and shipping requirements for WATER samples and Field Blanks dedicated to TARGETED ANALYSES

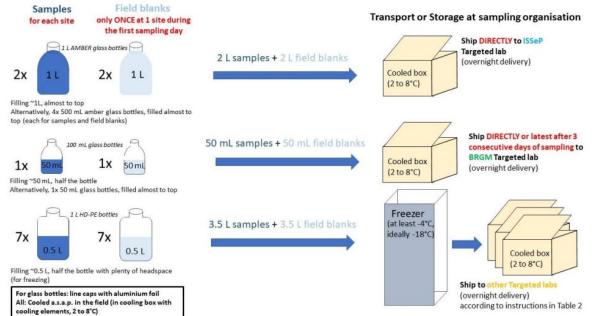
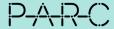
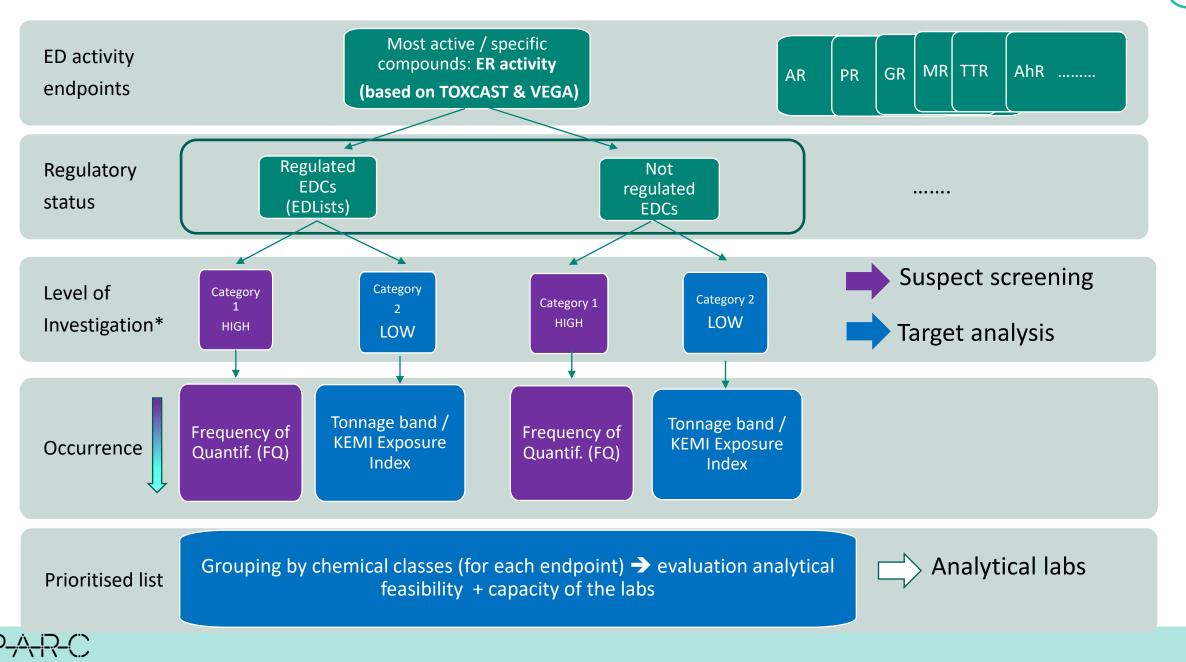
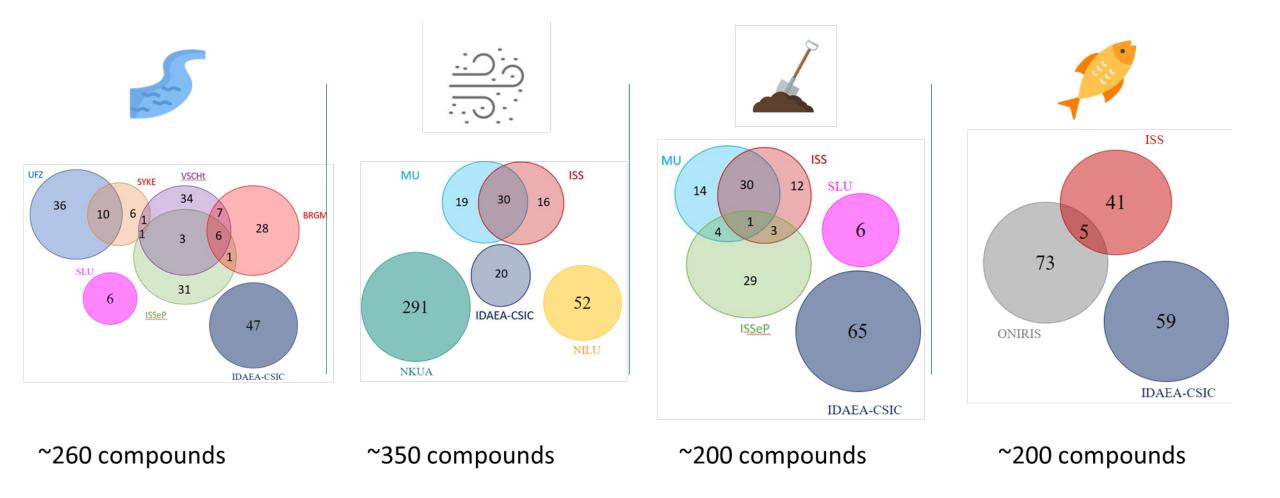
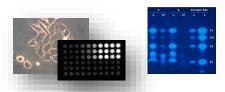




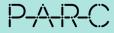
Figure 1: Water sampling and field blank scheme within the PARC T4.2 EDC campaign for targeted analyses, volumes and number of bottles given per sampling site for the water samples and for the first sampling day for the field blanks. Note: Glass bottles should have **pyrolyzed/rinsed aluminium foil lining** of the screw


Lab	Required bottle type	Number of bottles and sample volumes	Condition to be achieved as soon as arriving with cooled samples at sampling organisation	Max. days of storage before shipping	Shipping plan
Coordinating Lab	HDPE	6 x 1 L HDPE filled with 1 L filled to the top	Cooled	0-1	Ship immediately after sampling, latest the day after, i.e. on Tuesday, send cooled
ISSeP	Amber glass	2 x 1 L amber glass bottles (OR 4x 500 mL amber glass bottles) filled to the top	Cooled SHIPPED directly	0	Ship directly after sampling (same day), ideally early in the week, send cooled
BRGM	Glass	1 x 100 mL OR 1x 50 mL glass bottle filled with 50 mL	Cooled	0-3	Ship immediately after sampling, latest after 3 consecutive sampling days, i.e. on Wednesday, send cooled
SYKE	HDPE	2 x 1 L HDPE filled with 0.5 L water	Frozen	7	Keep frozen and collect samples for max. a week and send samples lates after 7 days, i.e. on the Monday after, send frozen
UFZ	HDPE	1 x 1 L HDPE filled with 0.5 L water	Frozen	7	Keep frozen and collect samples for max. a week and send samples latest after 7 days, i.e. on the Monday after, send frozen
IDAEA-CSIC	HDPE	1 x 1 L HDPE filled with 0.5 L water	Frozen	7	Keep frozen and collect samples for max. a week and send samples latest after 7 days, i.e. on the Monday after, send frozen
VSCHT	HDPE (stored in dark)	1 x 1 L HDPE filled with 0.5 L water (stored dark)	Frozen (protected from light)	14-21	Keep frozen and collect samples for max. 2-3 weeks, send frozen, ideally on a Monday
SLU	HDPE	2 x 1 L HDPE filled with 0.5 L water	Frozen	21-28	Keep frozen and collect samples during up to 3-4 weeks, send frozen, ideally on a Monday

Prioritisation of compounds for target vs suspect screening



Substances selected for target analysis



Selected in vitro bioassays

Endocrine Dathway/function	Endpoints	Bioassays / Human receptors	Bioassays / Fish receptors*			
Steroid hormones	ER	MELN pYES	-	• Well-established bioassays : ER, AR, AhR		
	AR	UALH-hAR MDA-kb2 pYAS	-	 Innovative bioassays : PXR, PR, GR, MR, PR, RAR, RXR, PPARg, TTR 		
	GR	HMLN-hGR	-			
	MR	UG5LN-hMR	UG5LN-zfMR			
	PR	HELN-PRB	UEL-zfPR			
Thyroid	TTR	TTR-FITC-T4**	-	ER: estrogen receptor GR: glucocorticoid receptor		
Retinoid	RAR/RXR	HRLN	-	MR: mineralocorticoid receptor		
Xenobiotic and endogenous metabolism	AhR	PAH-CALUX EROD/HepG2	- EROD/PLHC1	PR: progesterone receptor TTR: thyroid receptor RAR: retinoic acid receptor		
	PXR	HG5LN-hPXR	HG5LN-zfPXR	RXR: retinoid X receptor AhR: aryl hydrocarbon receptor		
	PPARg	HG5LN-hPPARg PPARg-GenBLAzer	HG5LN-zfPPARg -	PXR: pregnane X receptor PPARg: peroxisome proliferator-activated re		

Conclusions and take home messages

A detailed technical specifications document is available online: <u>www.eu-parc.eu/deliverables</u>

Practical – large scale monitoring

- Good organisation required centralised management
- Alignment with other monitoring campaigns hard (to impossible) due to difference in timing, protocols,...
- Sample acquisition from environmental specimen banks is hard as often small amounts available only

Expected outcomes

- Overlapping patterns among countries, i.e. sources/pressures connected to certain EDCs;
- Identifying EDCs that both overlap among and are specific for certain matrices;
- Close the gap between BioTEQs and ChemTEQs

08.11.2023

Technical specifications of the study: Project design, hypotheses and research questions as well as analytical procedures including QA/QC and data flows

AD4.5

Download +

Collaboration is key

T4.2 Task leaders

Valeria Dulio (INERIS), Katrin Vorkamp (Aarhus University)

EDC Project leaders

Valeria Dulio, Elise Chatillon, Abd-El-Rahman El-Mais, Nina Huynh and Azziz Assoumani (INERIS), Gunnar Thorsén and Kerstin Pütz (IVL)

PARC T4.2 EDC group

UBA, AU, SYKE, INRAE, UFZ, IDAEA-CSIC, ANSES, BfG, BPI, BRGM, CNRS, CSTB, EAWAG, EFET, Fraunhofer-IME, FISABIO, INERIS, ISS, ISSeP, IVL, JSI, LNS, MU, NILU, NKUA, NMBU, ONIRIS, OVAM, SCIENSANO, UAntwerpen, UL, VSCHT, VU-E&H, VITO

Co-funded by the European Union

Environmental monitoring of endocrine disrupting chemicals through the integration of bioassays and chemical analyses *Laetitia Six, OVAM, Policy Coordinator*

