

EmConSoil a Multi-stakeholder Network for Emerging Soil Contaminants

Sustainable in situ solutions for PFAS source-plume systems using colloidal activated carbon

ENSOr

Kris Maerten, REGENESIS, Technical Manager Europe

Sustainable in situ solutions for PFAS sourceplume systems using colloidal activated carbon

Kris Maerten MSc Eng Technical Manager, Europe REGENESIS

ENSOr, March 14th 2024

How can we treat PFAS?

→ PFAS are EVERYWHERE!

➔ Available technologies

- Feasibility and costs
- Risk for secondary sources
- Sustainability?

(ISO 18504:2017) definition:

Sustainable Remediation is the

'elimination and/or control of unacceptable risks in a safe and timely manner whilst optimizing the environmental, social and economic value of the work.'

→ Can we treat PFAS in a sustainable way?

 $https://www.lemonde.fr/en/les-decodeurs/article/2023/02/23/forever-pollution-explore-the-map-of-europe-s-pfas-contamination_6016905_8.html$

Colloidal Activated Carbon: SourceStop and PlumeStop

REGENESIS[®]

Size: 1 – 2 μm = Size of a red blood cell Suspended in water

Wide area distribution

- No high-pressure fracturing needed

Coats aquifer surfaces

- Creates subsurface activated carbon filter

Extremely fast sorption of PFAS

- Smaller particles provide more exterior surface
- Shorter distance to all the sorption sites compared to GA Xiao, Ulrich, Chen & Higgins. Environ. Sci. Technol. 2017, 51, 6342-6351

PFAS Source-Plume System

Result

- Stabilization of PFAS source
- Stop leaching ('bleeding') of source
- Elimination of risks inside treatment area and for downgradient receptors
- (Enhanced) attenuation!

address them. Finally, a list of potential methods to enhance PFAS MNA is provided for

Example site: treatment capillary fringe (InSitu Remediation Services, Canada)

- Geology: silty sand
- Extensive investigation incl. porewater samples collected from lysimeters
- Importance of capillary fringe!
 - Groundwater: max. 66 μg/l (sum ind. compounds)
 - Porewater: max. 709 μg/l (sum ind. compounds)
- Treatment targets air-water interface only
- Injection of PlumeStop
- Placement validation through TOC analyses

REGENESIS[®]

PlumeStop barriers – proven technology

REGENESIS[°]

Grid View

Award-Winning

PFAS Remediation At A Private Airfield

In situ PlumeStop barrier treatment unlocks site divestment and redevelopment in England, UK A sustainable solution -**REGENESIS** and Mott...

PlumeStop

Eliminates PFAS For 7 Years

Download Case Study10m 46s reading time This case study reviews the first known full-scale in situ PFAS treatment worldwide completed in...

¹Porewater Solutions, Ottawa, Ontario, Canada ²Department of Civil and Environmental Engineering, University of Waterloo, Ontario,

RESEARCH ARTICLE

Sust Waterloo, Canada Rem ³Department of Civil and Environmental Engineering, Carleton University, Ontario, Com Ottawa, Canada Envi

⁴In Situ Remediation Services Ltd., St. George Ontario, Canada

Correspondence

Imp

Tern

This

an ov

findi

susta

comr

carri

Ram

REGI

REMI

Grant R. Carey, Porewater Solutions, 2958 Barlow Crescent, Ottawa, ON K0A 1T0, Canada. Email: gcarey@porewater.com

Funding information

Porewater Solutions, Ontario Centers for Excellence, and Natural Sciences and Engineering Research Council

Abstract

A review of state per- and polyfluoroalkyl substances (PFAS) guidelines indicates that four long-chain PFAS (perfluorooctanesulfonic acid [PFOS] and perfluorooctanoic acid [PFOA] followed by perfluorohexanesulfonic acid [PFHxS] and perfluorononanoic acid [PFNA]) are the most frequently regulated PFAS compounds. Analysis of 17 field-scale studies of colloidal activated carbon (CAC) injection at PFAS sites indicates that in situ CAC injection has been generally successful for both short- and long-chain PFAS in the short-term (0.3-6 years), even in the presence of low levels of organic co-contaminants. Freundlich isotherms were determined under competitive sorption conditions using a groundwater sample from an aqueous filmforming foam (AFFF)-impacted site. The median concentrations for these PFAS of interest at 96 AFFF-impacted sites were used to estimate influent concentrations for a CAC longevity model sensitivity analysis. CAC longevity estimates were shown to be insensitive to a wide range of potential cleanup criteria based on modeled conditions. PFOS had the greatest longevity even though PFOS is present at higher concentrations than the other species because the CAC sorption affinity for PFOS is considerably higher than PFOA and PFHxS. Longevity estimates were directly proportional to the CAC fraction in soil and the Freundlich $K_{\rm f}$, and were inversely proportional to the influent concentration and average groundwater velocity.

Longevity of colloidal activated carbon for in situ PFAS remediation at AFFF-contaminated airport sites

Grant R. Carey¹ | Seyfollah G. Hakimabadi² | Mantake Singh³ | Claire Woodfield³ Paul J. Van Geel³ | Anh Le-Tuan Pham²

Rick McGregor⁴

WILEY

REGENESIS

Carbon Footprint

70 x

Total Carbon Footprint: P&T vs Treatment In-Place

Thank you

Kris Maerten Technical Manager Europe at Regenesis

Kris Maerten MSc Eng Technical Manager Europe kmaerten@regenesis.com +32 498 57 26 90