

Understanding and mitigating cadmium uptake in cacao beans in Latin America

Lucia Buvé, NICOLE Foundation, executive director

PILOT STUDIES ON HEAVY METALS IN AGRICULTURE

Mitigating cadmium in cacao beans in Latin-America

Lucia Buvé NICOLE Foundation

PROJECT FOCUSING LATIN AMERICA 2021-2023 EUROPE

┿

ADMINISTRATIVE SUPPORT

INTRODUCTION AND CONTEXT

 In 2019, EU Regulation 488/2014 came into force, setting maximum levels for cadmium chocolate-based end products. Normally, EU-regulations come immediately into force, but time was given for research

Product	Maximum level mg/kg wet weight
Milk chocolate with <30% dry cocoa solids	0.10
Chocolate with ≥30% <50% cocoa solids	0.30
Chocolate with ≥ 50% dry cocoa solids	0.80
Cocoa powder sold to the final consumer or as an ingredient in sweetened cocoa powder sold to the final consumer (drinking chocolate)	0.60

- The EU regulation had of course a direct consequence on the quality/Cd content of cacao in some producing countries, prohibiting the export to the EU-market if thresholds are exceeded
- Blending was allowed (60kg bags)

INTRODUCTION AND CONTEXT

- The problem occurs mainly in Latin-American countries where indeed thresholds are exceeded in a systematic way, despite that Cd concentrations in the soils are not higher than background concentrations seen in other regions.
- A lot of EU-funded projects (KUL, prof. E. Smolders) were launched to find solutions to mitigate the uptake of Cd in the cacao trees :
- Cd appeared to be mostly of natural origing, with a high bio-availability in young volcanic soils
- Several amendments were tested, including in field trials : biochar, lime, zeolites.
- Results were not very conclusive, the problem appeared to be very complex
- Current research is now focusing on ways to remove Cd during the fermentation process

- Assess and propose <u>mitigation measures</u> to the presence of <u>cadmium</u> (Cd) in <u>cacao</u> beans based on conceptual models developed for the Eastern Lowlands (<u>Trinidad & Tobago</u>) and in the state of Manabí (<u>Ecuador</u>)
- Contribute with FAO to <u>implement actions</u> of the agenda set for the <u>GlobalSOilPartnership18</u>

- Internal team meetings
- Exchange of information and materials with local contacts
- Thorough literature review
- Participation in technical events

Interviews, assessing local contacts, refining the information obtained by literature review

Potential sources Geogenic Anthropogenic

Potential receptors

Human receptors Environmental receptors

POTENTIAL SOLUTIONS

- Reducing Cd in cocoa and chocolate through blending;
- Avoiding high risk areas for starting new plantations;
- Minimizing the absorption of Cd by the cacao tree through management of the soil-to-product scale (agricultural practices, etc.) and the basin-to-soil scale
- Solutions should be cheat and practical : cacao farmers are not engineers

9 POTENTIAL SOLUTIONS: BASIN-TO-SOIL SCALE

- Evaluate and manage surface and groundwater quality;
- Consider and study the geogenic (volcanic eruptions!) and anthropogenic air emissions of Cd and/or acidic compounds;
- Evaluate impact of **flooding** and **manage occupation**;
- Analyze and monitor the import and application of **fertilizers**;
- Analyze and monitor the import and application of **manure**, especially considering Cd content and soil acidification;

9 POTENTIAL SOLUTIONS: BASIN-TO-SOIL SCALE

- Decrease bioavailability of Cd in the soil by applying soil amendments. Liquid lime and/or liquid biochar should be considered as possibilities, considering non desired side effects;
- Application of nature-based solutions (plants grown beside the cacao tree, such as alfalfa);
- Management of cacao leaves and cut wood;
- Consider the possibility of **alternative crops** to replace cacao at specific locations (plants that are more tolerant to heavy metals); even non-food crop

PROPOSITION: EXPANDING TO NEW TERRITORIES

Sharing the methodology in international events for <u>relevant stakeholders</u>

<u>Training local partners</u> to develop conceptual site models, evaluate sources/receptors and conduct samplings

<u>Monitoring</u> of projects in different locations through partners and local institutions

THANK YOU!

SERGEJUS USTINOV (SERGEJUS.USTINOV@FAO.ORG) LUCIA BUVE (LUCIA.BUVE2@GMAIL.COM) OLIVIER MAURER (OLIVIER.MAURER@WSP.COM) SASHA TOM HART (SASHA.HART@USP.BR) SANDER ESKES (SANDER.ESKES@EKOSBRASIL.ORG) ANA CRISTINA MOERI (ANA.MOERI@EKOSBRASIL.ORG) LUCIANA DA C. FERREIRA (LUCIANA.FERREIRA@EKOSBRASIL.ORG)

Understanding and mitigating cadmium uptake in cacao beans in Latin America

Lucia Buvé, NICOLE Foundation, executive director

