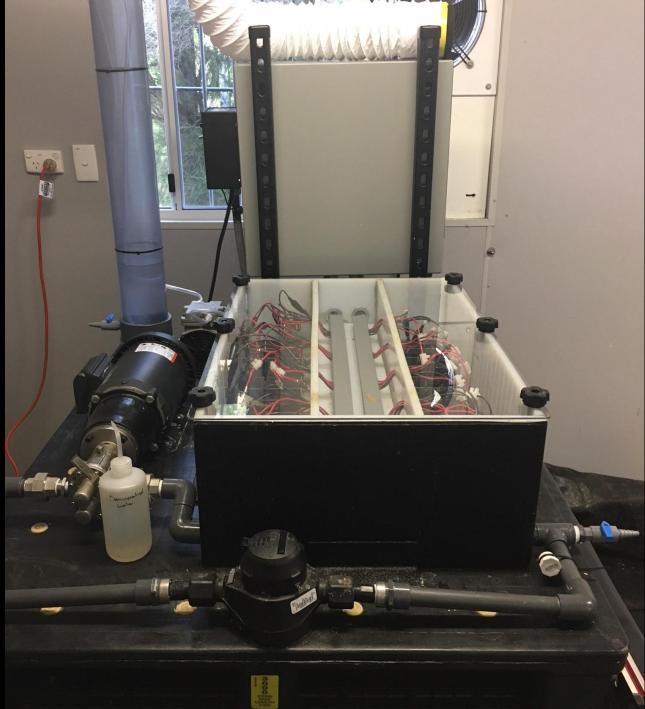


Developing a new treatment technology for destroying PFAS (DE-FLUORO[™])

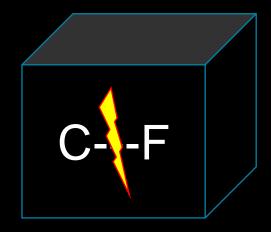
Dr Rick Parkman

Monday 18 May 2020

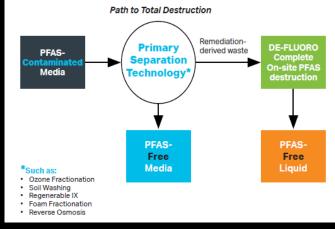

ENSOr 2020 Online Workshop

Presentation Overview

- Overview of Activities to Date
- Discovery Science
- Summary of Initial Bench-Scale Electrochemical Oxidation Treatment Results
- Building and Developing the EO Reactors
- Preliminary Results
- Summary and Next Steps

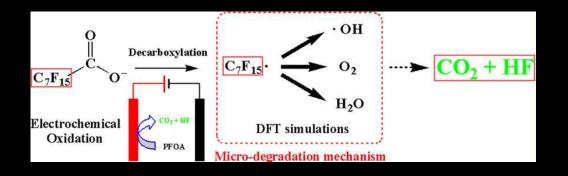

Co-authors and acknowledgements (AECOM US and ANZ EBL, US WBL, Ventures and partners)

- Rachael Casson, Director of International PFAS Program
- Dr Shangtao Liang, Scientist/ Treatability Studies
- Dr Jack Q. Huang University of Georgia



Introducing DE-FLUORO[™] - PFAS Destruction Technology

- A *destructive* PFAS treatment technology
- DE-FLUORO[™]: Degradation via Electrochemical oxidation of per- and polyfluoroalkyl substances
- Utilizes a proprietary, high durability and low cost electrode that can be used in different sizes, forms and shapes for different applications
- Initial applications focus on coupling with other treatment technologies that do not destroy PFAS but have processes that generate PFAS concentrated liquid waste
- It reduces environmental liability of transporting PFAS impacted waste off-site

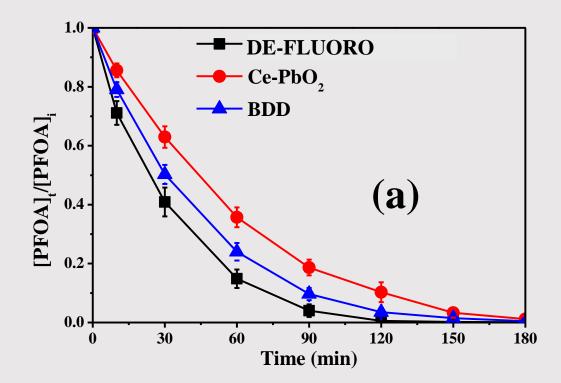


AECOM

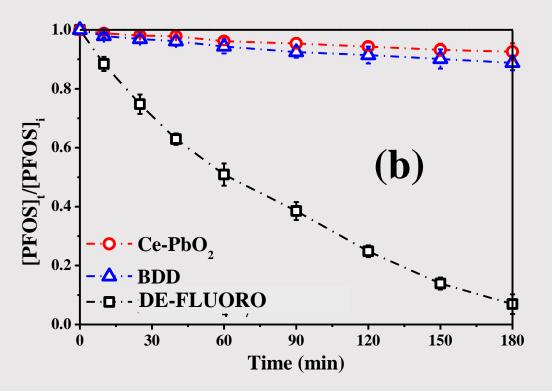


Coupling Approach

Treatment Science (Proof of Concept)


- EO is a proven technology that defluorinates and mineralizes short-chain and long-chain PFAS
- Several publications (technology well understood including mechanisms and kinetics of reactions)
- Measured electrode durability and compared oxidation potential against other electrode materials
- Tested against other electrode materials (Ce-PbO2 and BDD) – spiked PFOS and PFOA

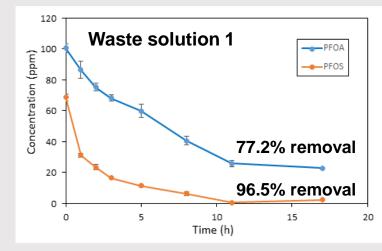
Publications

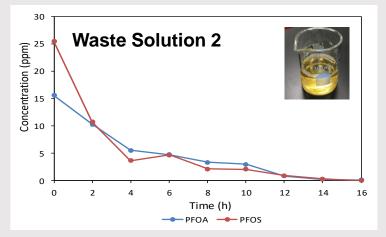

- Niu, Junfeng, et al. "Electrochemical oxidation of perfluorinated compounds in water" **Chemosphere** 146 (2016) 526-538
- Lin, Hui, et al. "Efficient sorption and removal of perfluoroalkyl acids (PFAAs) from aqueous solution by metal hydroxides generated in situ by electrocoagulation." Environmental Science & Technology 49.17 (2015): 10562-10569.
- Lin, Hui, et al. "Highly efficient and mild electrochemical mineralization of long-chain perfluorocarboxylic acids (C9–C10) by Ti/SnO2–Sb–Ce, Ti/SnO2–Sb/Ce–PbO2, and Ti/BDD electrodes." **Environmental Science & Technology** 47.22 (2013): 13039-13046.
- Niu, Junfeng, et al. "Theoretical and experimental insights into the electrochemical mineralization mechanism of perfluorooctanoic acid." Environmental Science & Technology 47.24 (2013): 14341-14349 Niu, Junfeng, et al. "Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce-doped modified porous nanocrystalline PbO2 film electrode." Environmental Science & Technology 46.18 (2012): 10191-10198.
- Lin, Hui, et al. "Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO 2–Sb, Ti/SnO 2–Sb/PbO 2 and Ti/SnO 2–Sb/MnO 2 anodes." Water Research 46.7 (2012): 2281-2289.

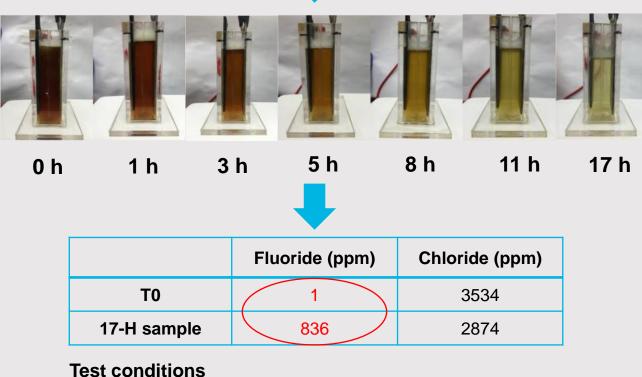
Bench Scale Results: DE-FLUORO™ destruction of PFAS (Spiked Water)

Electrode	PFOA t _{1/2} (min)	PFOS t _{1/2} (min)	
Ce-PbO ₂	34.7	NA	
BDD	25.7	NA	
DE-FLUORO [™] Electrode	20.3	52.6	

Methods and systems for electrochemical oxidation of polyfluoroalkyl and perfluoroalkyl contaminants. **2016, US provisional patent application 62377120




Test conditions


- 0.5 mM PFOA (a) 0.1 mM PFOS (b)
- 5 mA/cm², 20 mM NaClO₄ as electrolyte
- 200 mL solution, 50 cm² electrode surface

DE-FLUORO™ (Bench Trial) treatment of ion exchange resin regeneration waste

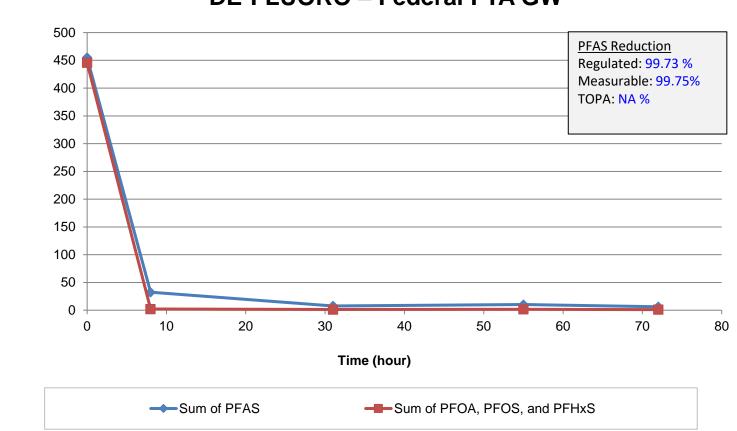
	TOC (ppm)	Conductivity (µs/cm)	PFOA (ppm)	PFOS (ppm)	PFHxS (ppm)	PFHxA (ppm)	PFHpA (ppm)	PFPeA (ppm)	PFBS (ppm)
	7861	2939	100.5	68.6	55.1	18.7	10.2	5.3	1.9

- Current density: 10 mA/cm²
- Cell voltage: 7.0 V •
- pH: 12.0 (initial), 9.0 (final) .

DE-FLUORO™ Development Models

Model 1 (Nemo)

Model 2 (Jaws)

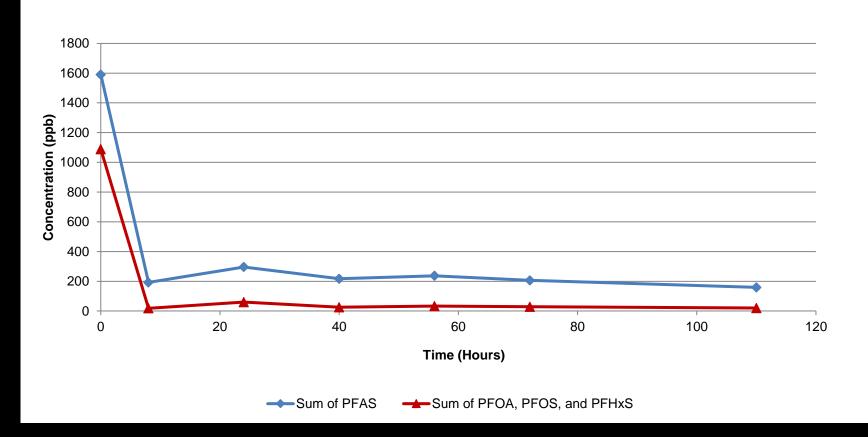


DE-FLUORO™ Demonstration Solutions/ Summary of Results

Trial #	Client	Sample Description	Initial total PFAS concentration (ug/L)	Mass Reduction
1	Government	Source area groundwater	455	99.7%
2	Chemical Manufacturer	Industrial wastewater 411		99.5%
3	Remediation Contractor	Remediation derived wastewater	diation derived wastewater 13,600	
4	Aviation	Remediation derived wastewater	diation derived wastewater 1,590	
5	Government	Source area groundwater	27.3	83.8%
6	O&G	Spent C6 AFFF solution 4,620		83.3%
7	Remediation Contractor	IX R – soft wash recipe 2,370		63.6%
8	O&G	AFFF Concentrate / Product 6,380,000		60 %

Government FTA groundwater

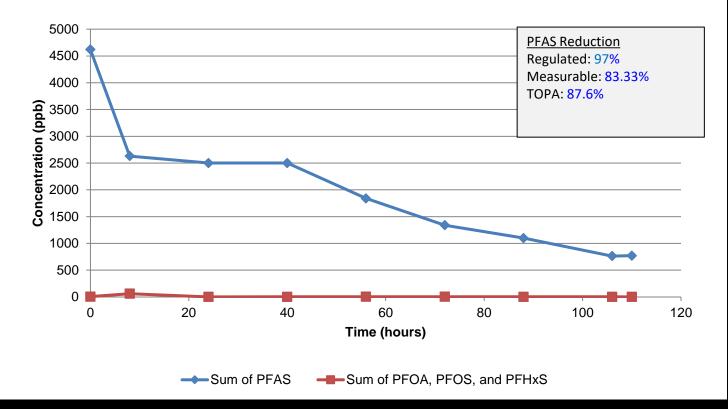
Concentration (ppb)


DE-FLUORO – Federal FTA GW

- More than 99% of regulated PFAS reduction by DE-FLUORO in under 8 hours
- More than 99% of total measurable PFAS reduction by DE-FLUORO in approximately 30 hours

Aviation Remedial Derived Waste

DE-FLUORO - Aviation Waste


- More than 98% of regulated PFAS reduction by DE-FLUORO in under 10 hours
- More than 90% of total measurable PFAS reduction by DE-FLUORO in approximately 110 hours

AECOM

O&G Spent AFFF Solution

DE-FLUORO - Spent AFFF Solution

- Unique sample little to no regulated PFAS within the sample
- More than 83% of total measurable PFAS reduction by DE-FLUORO in approximately 110 hours

Direction – Next tactical steps

Undertake 'real world' destruction trials with industry supplied samples

Undertake laboratory bench testing to evaluate EO as a destruction technology Commercial modelling and

advance engagement / partnering arrangements with industry Build full scale systems - onsite and licensed premises

Build a pilot system and demonstrate

onsite

AECOM

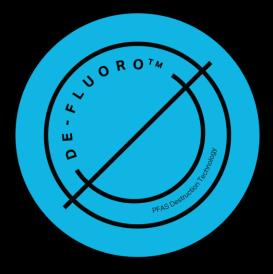
DE-FLUORO™ – Treatment Systems and Electrodes

Bench Scale Unit ~ 4 L/m

Membrane Electrodes

- Flow-through mode
- Large Surface Area
- Stable and long life
- Scalable and commercially available

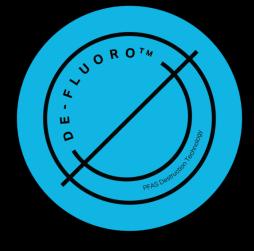
-			
I		-	F
H		in the second	
T	all and the second	- Marine Car	
T	-	and the second	
-			



Key Takeaways

- DE-FLUORO[™] WORKS treats and destroys PFAS (including short to long chain PFAAs and precursors)
- 2. Can be standalone or coupled treatment technology
- 3. Can destroy PFAS on-site
- 4. Comparison to other technologies indicates this is cost effective / competitive

2018 EBJ Business Achievement Awards


TECHNOLOGY MERIT: PFAS

AECOM (Chelmsford MA) for developing an onsite technology that destroys per- and polyfluoroalkyl substances (PFAS) compounds in

Thank you for listening

Please get in touch:

Dr Rick Parkman Practice Area Lead, Remediation & Industrials Sectors (EMEA) AECOM Environment & Ground Engineering M: +44 7801 788 796 Rick.Parkman@aecom.com

