

Rijksinstituut voor Volksgezondheid en Milieu Ministerie van Volksgezondheid, Welzijn en Sport

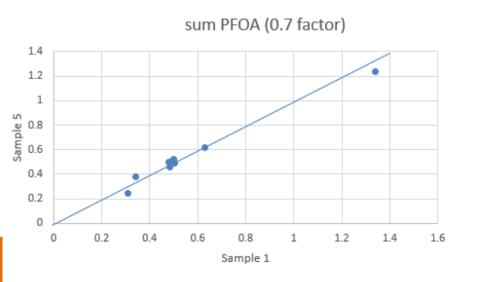
PFAS background levels and risk assessment in soil and sediments

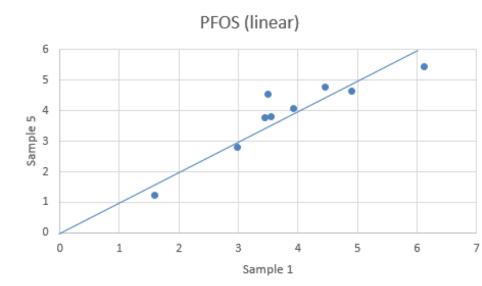
ENSOR May 2020

Introduction – PFAS in soil and groundwater in The Netherlands

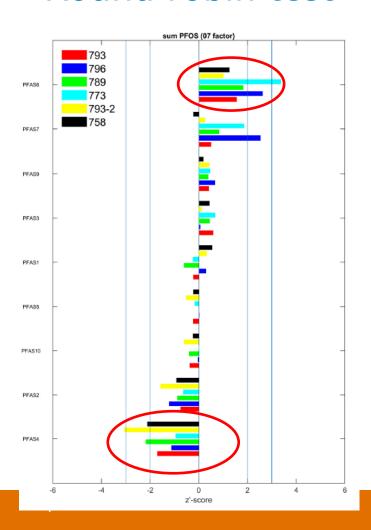
Until recently main attention focused on larger 'point sources'

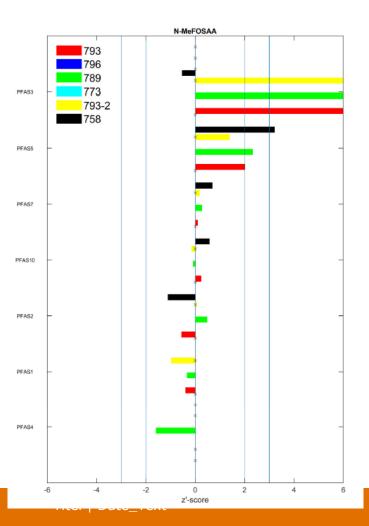
Activity	Example/type
Practicing and incidents involving AFFF	Schiphol (2008)
PFAS producing industry	Chemours Dordrecht
Landfills	PFAS in waste material
Industrial applications/processing	E.g. drying of products. metal plating
Other industrial sites	Smaller locations





Round robin test PFAS in soil


- 9 laboratories: 6 NL, 2 BE, 1SE
- 9 (sediment) samples, 1 blind duplicate, all samples analyzed in duplicate
- Intra laboratory reproducibility is good
- <u>Inter</u> laboratory reproducibility is comparable to e.g. PCB's room for improvement with individual participants
- Performance alkylacids > sulphonic acids



Round robin test

Round robin conclusions

- Analytical performance overall at acceptable level
- Comparable or better to e.g. PCB's
- Methodological improvement or even repairs in individual instances necessary
- Reproducibility even at low concentrations ($\sim 0.1 \text{ ug/kg}$) = good
- Accreditation of soil sampling and analysis is underway
- No accreditation for round robin testing in soil yet (?)

Limit values for re-use of soils and sediments in The Netherlands

Re-usable

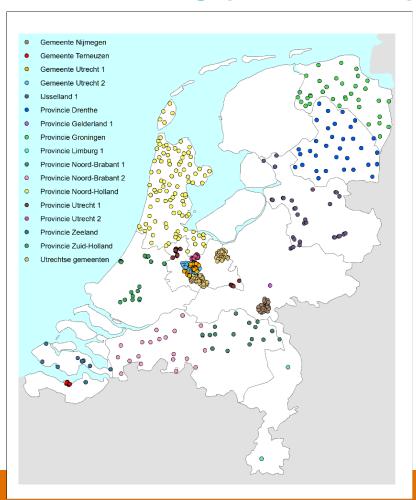
Residential

Industrial/commercial

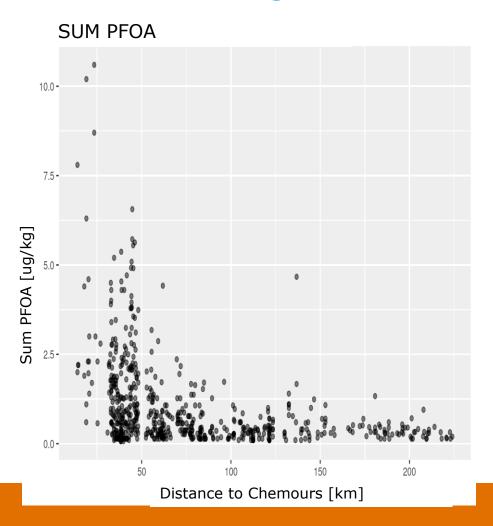
Not re-usable

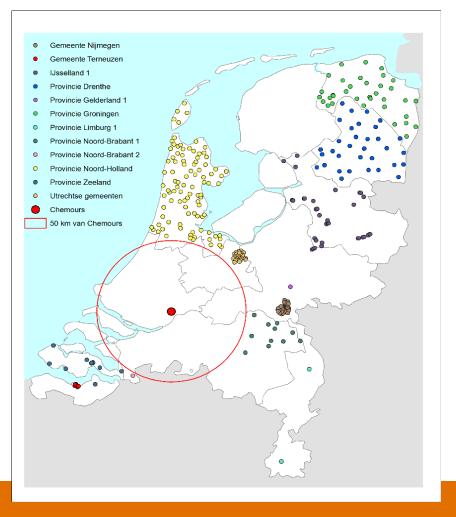
BACKGROUND VALUES

UPPER LIMIT
RESIDENTIAL CLASS


UPPER LIMIT
INDUSTIAL CLASS

- First preliminary national framework: July 2019
- No background values available yet: LOQ serves as replacement
- Consequently large impact on market for re-usable soil and sediment

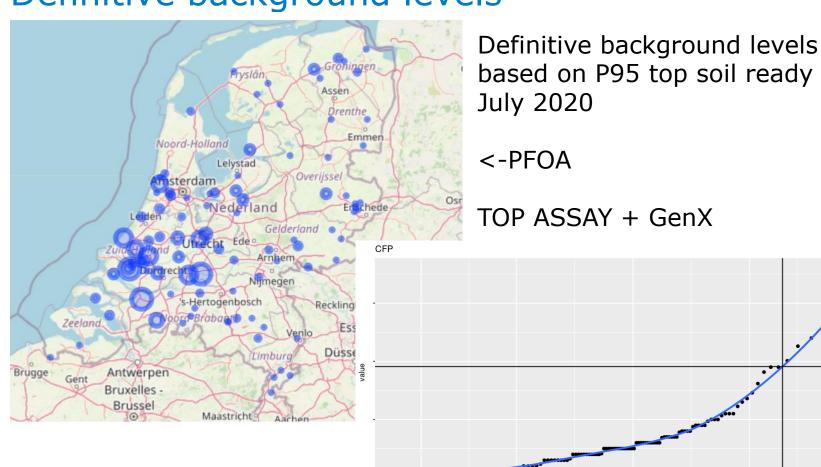

Ubiquitous concentrations of PFAS in soil: establishing preliminary background levels



- In October 2019 data was collected from available soil investigations
- November 2019: processing data:
- Point sources
- Land use
- Soil parameters (OC, clay)
- 1 December: preliminary values operationalized in soil policy by Ministry

Results background values: PFOA

Results background values


Based on P80 of concentration distributions of PFOS and PFOA

Subst.	Prelim. bv in (µg/kg ds)	Prelim. bv (µg/kg ds) rounded to 1 decimal
PFOS	0.94	0.9
PFOA	0.77	0.8

- Definitive values will be available in july 2020
- Of ~30 PFAS only PFOS and PFOA were structurally elevated in top soil
- Stricter criteria apply for groundwater protection areas

Definitive background levels

percentile

Environmental risk limits for soil and groundwater

- Currently based on endpoints:
 - Human health
 - Direct ecotoxicity
 - Indirect ecotoxicity
- Risk limits to be (further) developed
 - Agriculture/food (in prep)
 - Leaching to groundwater and surface water (in prep)
 - Waste streams and building materials (in prep)

Ecological risk limits

Direct toxicity

Compound	Risk level	Risk Limit (ug/kg)
PFOS	HC5	16
	Intermediate/HC20	380
	HC50	9100
PFOA	HC5	500
	Intermediate/HC20	5000
	HC50	50000

Indirect toxicity

Compound	Risk level	Risk Limit (ug/kg)
PFOS	HC5	3
	Intermediate/HC20	18
	HC50	110
PFOA	HC5	7
	Intermediate/HC20	89
	HC50	1137
GenX	HC5	3
	Intermediate/HC20	54
	HC50	964

What do we still want to know?

- Sources and distribution of PFAS in the environment:
 - PFAS in products
 - PFAS in water and waste streams irt emissions
 - Background values in groundwater (2021)
 - PFAS in river sediments
- Environmental behavior:
 - Leaching tests from soil and sediment (2020)
 - Risk limits in soil protecting groundwater (for re-use; 2020)
- Substance risks and risk limits:
 - EFSA evaluation 2020
 - Other PFAS/combination toxicity
 - Risk limits for waste streams
- International network: align with international developments